PENGUJIAN NESS-APP UNTUK DETEKSI SARANG BURUNG WALET TESTING OF NESS-APP FOR DETECTING SWIFTLET NESTS
DOI:
https://doi.org/10.29303/abdiinsani.v11i4.1786Keywords:
Swiftlet Nest, android application, Ness-App, quality, MobileNetAbstract
This article discusses the development and testing of the Ness-App application, designed to detect and assess the quality of swallow nests effectively and efficiently. The main issue addressed is the difficulty in determining the quality of swallow nests through photos or videos in buying and selling transactions. The purpose of this research is to develop an Android application using object detection technology to assist PT. Waleta Asia Jaya in assessing the quality of swallow nests. The method used involves creating an object detection model using Convolutional Neural Network (CNN) and SSD MobileNet architecture. The results indicate that the Ness-App application can improve transaction efficiency and quality, providing a better understanding of swallow nest conditions for collectors and farmers. In conclusion, Ness-App supports digitalization and technological advancement in the swallow nest industry by providing an effective tool for quality assessment and accelerating the transaction process.
Downloads
References
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. In Journal of Big Data (Vol. 8, Issue 1). Springer International Publishing. https://doi.org/10.1186/s40537-021-00444-8
Beschi Raja, J., Anitha, R., Sujatha, R., Roopa, V., & Sam Peter, S. (2019). Diabetics prediction using gradient boosted classifier. International Journal of Engineering and Advanced Technology, 9(1), 3181–3183. https://doi.org/10.35940/ijeat.A9898.109119
Edial, H., & Antomi, Y. (2018). Analysis of Distribution And Productivity Patterns of Swallowhouses (Collocalia Sp) in Kampar Regency. Science and Environmental Journals for Postgraduate, 1(1), 85–93. http://senjop.ppj.unp.ac.id/index.php/senjop/article/view/1/11
Hartini, S., Putro, F. H. A., & Setiawan, T. (2020). Pemanfaatan Media Sosial Sebagai Media Komunikasi Pemasaran Modern. Digikom, 1(1), 33–37. https://ejournal.uby.ac.id/index.php/digikom/article/view/560
Herman, Assagaf, S. F., Putri, A. A., & Putra, A. D. (2024). Program Rumah Cerdas Digital Sebagai Upaya Peningkatan Literasi Digital di Desa Mallongi-Mallongi. Kumawula : Jurnal Pengabdian Kepada Masyarakat, 7(2), 345–351. http://jurnal.unpad.ac.id/kumawula/article/view/49833
Indrajaya, D., Parhusip, H. A., Trihandaru, S., & Hartanto, D. (2024). MobileNetV2-D and multiple cameras for swiftlet nest classification based on feather intensity. Indonesian Journal of Electrical Engineering and Computer Science, 34(2), 1144–1158. https://doi.org/10.11591/ijeecs.v34.i2.pp1144-1158
Kaur, J., & Singh, W. (2022). Tools, techniques, datasets and application areas for object detection in an image: a review. Multimedia Tools and Applications, 81(27), 38297–38351. https://doi.org/10.1007/s11042-022-13153-y
Lin, J., Chiu, C., & Cheng, Y. (2021). Object Detection in RGB-D Images via Anchor Box with Multi-Reduced Region Proposal Network and. Journal of Signal Processing Systems, 93, 1219–1233. https://link.springer.com/article/10.1007/s11265-021-01677-9
Ma, A., Rahmaniar, W., Imam Karim Fathurrahman, H., Zatu Kusuma Frisky, A., & Mazhar ul Haq, Q. (2022). Understanding of Convolutional Neural Network (CNN): A Review. International Journal of Robotics and Control Systems, 2(4), 739–748.
Michele, A., Colin, V., & Santika, D. D. (2019). Mobilenet convolutional neural networks and support vector machines for palmprint recognition. Procedia Computer Science, 157, 110–117. https://doi.org/10.1016/j.procs.2019.08.147
Muliati, M., & Dawiya, B. (2022). Studi usaha sarang burung walet dalam meningkatkan pendapatan Desa. Jurnal Mirai Management, 7(1), 182–199. https://journal.stieamkop.ac.id/index.php/mirai/article/download/2358/1563
Parhusip, H. A., Trihandaru, S., Hartomo, K. D., Lewerissa, K. B., Mahastanti, L. A., & Hartanto, D. (2024). Management of Traditional Business into Modern: from Microsoft Excel to Deep Learning for prototyping classification Swiftlet’s nests. International Journal of Community Service, 4(2), 124–132. https://ijcsnet.id/index.php/go/article/view/268/243
Ri Esso, A. S., Yahya, M., & Nur, K. (2024). Penerapan Digital Marketing Melalui E- Commerce Tobel (Toko Beli) Di Desa Bontosunggu Kecamatan Bajeng Kabupaten Gowa Sulawesi Selatan. Kumawula: Jurnal Pengabdian Kepada Masyarakat, 7(1), 191–197. https://doi.org/10.24198/kumawula.v7i1.50010
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4510–4520. https://doi.org/10.1109/CVPR.2018.00474
Tan, M., Pang, R., & Le, Q. V. (2020). EfficientDet: Scalable and efficient object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 10778–10787. https://doi.org/10.1109/CVPR42600.2020.01079