REDUKSI SERAT DEDAK PADI SEBAGAI MEDIA PEIMBUATAN PROTEIN SEL TUNGGAL PAKAN AYAM PETELUR

Muhamad Ali, Muhamad Amin, dan Muhamad Ichsan ${ }^{*}$
Fakultas Peternakan Universitas Mataram Il. Majapahit No. 62 Mataram, 83125
"Korespondensi: ichsan.muhamad1950@gmail.com

Dilerima 19 Desember 2017 / Disetujui 12 Februari 2018

Abstract

ABSTRAK

Pakan ayam petelur yang tersedia dan digunakan oleh peternak saat ini merupakan pakan komersial yang sebagian besar terdiri dari biji-bijian yang bersaing dengan kebutuhan manusia, terutama tepung ikan, kedelai, dan jagung. Sampai saat ini, harga pakan kumersial yang terus meningkat karena bahan penyusunnya di atas diimpor menjadi permasalahan utama bagi peternak-peternak kecil. Ketergantungan penuh terhadap pakan komersial dapat mendatangkan kerawanan terhadap kelangsungan procuksi telur. Kondisi inilah yang dialami oleh semua peternak ayam petelur maupun ayam pedaging yang tersebar di Pulau Lombok. Optimalisasi pemanfaatan bahan-bahan lokal yang mudah diperoleh dan berharga murah serta tersedia secara kontinyu seperti hasil samping tanaman padi, dedak padi, merupakan langkah strategis yang harus ditempuh untuk mereduksi bahkan menghilangkan ketergantungan di atas. Namun, tingginya kandungan serat dan senyawa antinutrisi (asam pitat) dedak padi menjadi kendala utama pemanfaatanya sebagai pakan ayam petelur maupun ayam pedaging. Untuk itu, melalui kegiatan ini telah dilakukan pelatihan peningkatan kualitas dedak padi menggunakan bakteri Amylococus liquefaciens yang tidak henya akan meningkatkan kandungan protein dedak padi, namun juga mampu memecah serat (selulosa, hemiselulosa, xylosa dan lain-lain) serta senyawa antinutrisi asam pitat pada limbah pertanian tersebut. Sehingga penggunaan dedak padi tersebut dpat ditingkatkan dalam ransum ayam petelur. Selain untuk memacu pengabdian dosen berbasis permasalahan kongkrit masyarakat, kegiatan ini diharapkan dapat meningkatkan pemahaman dan keterampilan peternak untuk meningkatkan nutrisi hasil samping dan limbah pertanian guna mendukung penggunaan ransum berbahan baku lokal secara swadaya, tidak tergantung pada pakan komersial, sehingga mandiri secara ekonomi. Hasil akhir yang telah dicapai adalah penggunaan bahan lukal sebagai pakan secra optmal yang akhirnya dapat meningkatkan pendapatan peternak.

Kata kunci: ayam petelur, dedak padi, serat, asam pitat, Bacillus omyloliquefaciens

PENDAHULUAN

Permasalahan yang dialami oleh peternak ayam petelur saat ini adalah mahalnya harga pakan komersial, dengan
ketersediaan yang tidak berkesinambungan, bahkan sulit diperoleh di pedesaan karena jauh dari tempat penjualan sapronak. Bahan-bahan penyusun yang sebagian besar diperoleh
dari impor, telah menjadi penyebab utama mahalnya harga pakan tersebut. Di sisi lain, terus meningkatnya harga pakan komersial tidak diikuti oleh naiknya harga telur. Sehingga ketergantungan terhadap pakan komersial terselut sangat rentan menimbulkan kerugian bagi peternak kecil. Selain itu, pakan komersial merek tertentu tidak tersedia secara kontinu. Penggantian dengan pakan komersial merek lain, walaupun kandungan protein dan energinya lebih tinggi, namun perbedaan palatabilitas pakan dapat mengganggu produksi telur.

Peternak memandang bahwa permasaiahan pakan di atas merupakan masalah prioritas saat ini yang harus diselesaikan. Pemahaman peternak terhadap nutrisi unggas yang sangat minim, menyebabkan peternak tidak mampu berkreasi untuk menghasilkan ransum walaupun bahan-bahan vang dibutuhkan tersedia di sekitar peternak. Tanaman padi sebagai tanaman pokok yang ditanam setiap tahun dapat menghasilkan dedak halus yang dapat digunakan sebagai sumber energi. Namun tingginya kandungan serat dan asam pitat sebagai senyawa antinutrisi merupakan faktor pembatas utama penggunaan dedak padi sebagai ransum pada ayam petelur.

Untuk itu, penggunaan bahan lokal di atas sebagai pakan harus ditunjang oleh inovasi pengayaan nutrisi. Rendahnya tingkat pendidikan dan keterampilan peternak menjadi penyebab tidak adanya inovasi teknologi di peternak kecil. Untuk itu, inovasi maupun teknologi tepat guna yang telah dihasilkan melalui riset di Universitas Mataram harus didifusikan untuk membantu permasalahan kongkrit masyarakat.

Untuk mengatasi permasalahan di atas, pelatihan pengolahan dedak padi
menggunakan bakteri Amyfocucus liquefaciens sangat mendesak dilakukan. Biofermentasi ini tidak hanya akan menghasilkan protein dari biomassa, namun kandungan selulosa maupun lignoselulosa pada limbah pertanian tersebut akan dapat direduksi (Diaz, 2008; Lei et., 2015). Bakteri ini juga telah digunakan sebagai probiotik untuk ayam pedaging sebagai direct feed mirroorganism (DFM) karena kemampuannya untuk menyeirnbangkan bakteri dalam saluran pencernaan ayam (「erreira et al., 2011 dan Lsi et at., 2015).

Diaz (2008) dan Wizna et al. (2007) melaporkan bahwa bakteri B. amytoliquefaciens mampu menghasilkan beberapa enzim yang sangat diperlukan untuk memecah serat seperti α-amilasc, hemisellulase, α-asetolastat, dekarboxilase, β-endoglukanase, pitase, maltogenik amilase and xilanase. Lebih lanjut, Wizna et af (2009) dan Wizna et af (2012) melaporkan bahwa bakteri ini mampu menurunkan serat kasar tepung tapioka dan dedak padi.

Adapun tujuan kegiatan pengabdian ini diantaranya adalah untuk mengoptimalkan penggunaan bahan-bahan lokal yang mudah diperoleh dan berharga murah untuk menyusun pakan ayam petelur. Kegiatan ini secara praktis dapat menumbuhkan kemandirian bagi peternak untuk membuat ransum sendiri berdasarkan bahan-bahan lokal yang mudah diperoleh dan berharga murah. Selain itu, secara ekonomi dapat meningkatkan pendapatan peternak melalui pengurangan biaya pembelian pakan koriersial dan penggunaan bahanbahan lokal;

METODE KEGIATAN

- Pembuatan Media LB dan Air Limbah Rendaman Kedelai

Untuk menumbuhkan bakteri yang tersimpan dalam bentuk stok gliserol, dibutuhkan media $1 B(1 \mathrm{~g} / \mathrm{ml})$ yang dilarutkan dalam air. Setelah itu dimasukkan media tersebut ke dalam tabung reaksi sebanyak 5 ml kemudian disterilisasi menggunakan autoclave. Media tersebut dapat disimpan pada suhu ruang. Dalam pembuatan media pertumbuhan bakteri dari air rendaman kedelai dibutuhkan glukosa sebanyak 2%, kemudian dicampur dengan air rebusan kedelai.

- Peremajaan Isolat Bakteri

Isolat bakteri yang disimpan di gliserol stok diambil menggunakan mikropipet sebanyak $50 \mu \mathrm{l}$ kemudian di masukkan pada media LB cair. Setelah itu dikultur menggunakan shaker selama 16 jam dengan kecepatan 120 rpm gada suhu $37^{\circ} \mathrm{C}$. Ujung ose dipanaskan padia Bunsen dan didinginkan dengan cara dicelupkan pada dinding, tabung reaksi terlebih dahulu kemudian dicelupkan pada isolat. Setelah itu lakukan streak (penggoresan) pada media padat yang telah disiapkan. Ose yang telah digunakan dibakar kembali. Hasil goresan kemudiar, di inkubasi di dalam inkubator suhu $37^{\circ} \mathrm{C}$ selama 24 jam.

- Pembuatan Stater

Koloni bakteri tunggal yang tumbuh pada media padat diinokulasikan pada media LB cair menggunakan ose yang tela'h disterilkan. Setelah itu kultur tersebut diinkubasi pada sheker selama 16 jam $(\mathrm{O} / \mathrm{N})$ dengan kecepatan 120 rpm pada suhu $37^{\circ} \mathrm{C}$. Starter ini siap digunakan sebagai bibit protein sel tunggal dengan
terlebih dahulu dikultur pada media air rebusan kedelai dengan volume yang lebih besar.

- Biofermentasi dedak padi

Bakteri jenuh yang telah dikultur selama 16 jam diambil menggunakan mikropipet, kemudian dimasukkan ke dalam media dan digoyongkan agar homogen. Setelah itu diinkubasi pada suhu $37^{\circ} \mathrm{C}$ menggunakan shaker dengan kecepatan 120 rpm selama 12 jam . Sctelah itu, suspensi bakteri siap digunakan untuk menyemprot dedak padi. Dedak padi yang telah disemprot diinkubasi pada suhu ruang selama 3 hari dan siap dicampur sebagai pakan ayam petelur.

HASIL DAN PEMBAHASAN

Untuk menumbuhkan bakteri yang tersimpan dalam bentuk stok gliserol, dibutuhkan media LB ($1 \mathrm{~g} / \mathrm{mll}$) vang dilarutkan dalam air. Setelah itu dimasukkan media tersebut ke dalam tabung reaksi sebanyak 1 L kemudian disterilisasi menggunakan autoclave. Media tersebut dapat disimpan pada suhu ruang sampai akan digunakan. Dalam pembuatan media pertumbuhan bakteri dari air rendaman kedelai dibutuhkan glukosa sebanyak 2%, kemudian dicampur dengan air rebusan kedelai.

Gambar 1. Shaker tempat kultur bakteri dan media kultur (LB dan rebusan kedelai).

Isolat bakteri yang disimpan di gliserol stok diambil menggunakan mikropipet sebanyak $50 \mu \mathrm{l}$ kemudian di masukkan pada media LB cair. Setelah itu dikultur menggunakan shaker selama 16 jam dengan kecepatan 120 rpm pada suhu $37^{\circ} \mathrm{C}$. Ujung ose dipanaskan pada Bunsen dan didinginkan dengan cara dicelupkan pada dinding tabung reaksi terlebih dahulu kemudian dicelupkan pada isolat. Setelah itu lakukan streok (penggoresan) pada media padat vang telah disiapkan. Ose yang telah digunakan dibakar kembali. Hasil goresan kemudian di inkubasi di dalam inkubator suhu $37^{\circ} \mathrm{C}$ selama 24 jam.

Gambar 2. Peremajaan Bacillus amilofiquefaciens pada media padat dan pembuatan starter

Kolon bakteri tunggal yang tumbuh pada media padat diinokulasikan pada media LB cair menggunakan ose yang telah disterilkan (Gambar 2). Setelah itu, kultur tersebut diinkubasi pada sheker selama $16 \mathrm{jam}(\mathrm{O} / \mathrm{N})$ dengan kecepatan 120 rpm pada suhu $37^{\circ} \mathrm{C}$. Starter ini siap digunakan sebagai bibit protein sel tunggal dengan terlebih dahulu dikultur pada media air rebusan kedelai dengan volume vang lebih hesar (10 L). Kultur
menggunakan air rebusan kedelai ini dilakukan juga pada suhu ruang dengan bioreactor buatan dari steanless yang dilengkapi dengan alat pengaduk vang terletak di oaglan dalam. Setelah kultur selama 16 jam, siap disemprolkan pada dedak padi. Bakteri jenuh yang telah dikultur selama 16 jam siap digunakan untuk menyemprot dedak padi yang telah disiapkan. Dedak padi yang telan disemprot diinkubasi pada suhu ruang (ditutup dengan terpal) selama 3 hari dan siap dicampur sebagai pakan ayam petelur.

Gambar 3. Dedak padi yang difermentasi menggunakan B. amiloliquefociens

Abstract

Dedak padi vang sudah diperlakukan dengan bakteri B. amiloliquefaciens diberikan sebagai pakan setelah dicampur dengan bahan-bahan lain seperti jagung dan konsentrat komersial serta mineral. Untuk meningkatkan pengetahuan peternak tentang peningkatan kandungan nutrisi pakan lokal (terutama dedak padi), maka dilakukan diskusi dengan para peternak ayam petelur yang terdapat di sekitar Kecamatan Pringgabaya Kabupaten Lombok Timur. Materi diskusi tersebut menyangkut:

- Pakan ayam petelur menggunakan bahan yang tersedia secara lokal;
- Teknik manajemen ayam petelur
- Peningkatan kandungan nutrisi bahan pakan lokal menggunakan fermentasi

Gambar 4. Suasana pelatihan yarig dilakukan melalui ceramah dan diskusi

Para peternak sangat antusias menerima materi-materi di atas karena sesuai dengan permasalahan yang dialami di lapang. Melalui forum diskusi, pernateri juga mendapat infomasi tentang permasalahan yang dialami oleh peternak selama ini. Bahkan peternak meminta kegiatan seperti ini dilakukan secara rutin setiap tahun. Selein itu, peternak juga berharap dihimpun dalam bentuk koperasi untuk memecahkan beberapa permasalahan yang sering terjadi terutama terkait dengan pemasaran telur yang harganya sering mengalami fluktuasi.

KESIMPULAN DAN SARAN

Kesimpulan

Kegiatan pengabdian ini telah menghasilkan dedak padi yang diperkaya kandungan nutrisinya melalui proses fermentas menggunakan bakteri B. amiloliquefaciens. Upaya ini dapat meningkatkan porsi perıggunaan dedak padi dalam ransum ayam petelur. Schingga ransum dapat disusun berbasis bahan baku lokal yang tersedia secara konlinu,
berharga murah, yang akhirnya dapat menurunkan biaya ransum.

Saran

Penggunaan dedak padi sebagai media pembuatan protein pakan ayam petelur harus ditunjang oleh inovasi pengayaan nutrisi yang memadai.

DAFTAR PUSTAKA

Asli, M. M., S. A. Hosseini, H. Lorfollahian and F. Shariatmadari. 2007. [ffect of Probiotic, Yeast, Vitamin E and Vitamin C supplements on performance and immune response of laying hen during high environment temperature. International Journal of Poultry Science. $6(12): 895900$.

Didz, D. 2008. Safety and efficacy of Ecobiol bacillus amyloliquefaciens) as feed additive for chickens for fattening. EFSA J. $77(3): 2-13$.

Ferreira, C. L., Salminen, S., Gr ceskuwiak, G., Brizuela, M. A. , Sanchez, L, Carneiro, H. and Bonnet, M.. 2011. Terminology concepts of probiotic and prebiotic and their role in human and animal health. Rev. Salud Anim. 33(1): 137-146.
tiol $1-S D$, Ferreira $A C M T$, Marciano J. Marques MC, Sant'Ana LL. 2014. Obesity and the Use of Antibiotics and Probiotics in Rats. 2014. Chemotherapy; 60(1): 162-167.

Kompiang, I. P. 2009. Pemamfaatan mikroorganisme sebagai probiotik untuk meningkatkan produksi ternak unggas di Indonesia. Jurnal Pengembangan Inovasi Pertanian 2(3): 117-191.

Lei W, Piao X., Ru Y, Zhang H., Péron A.,
and Zhang II. 2015. Effect of Bocillus amyloliquefaciens-based direct-fed microbial on performance, nutrient utilization, intestinal morphology and cecal microflord in broiler chickens. Asian Australas. J. Anim. Sci., 28(2): 239-246.

Matenva S, Gaalova M, Šaly J, Fialkovičova M. 2009. Investigation of the effect of probiotics and potentiated probiotics on productivity of laying herns. Czech J. Anim. Sdi., 54(1): 24 30.

Varankovich AV, Nickerson MT, and Korber DR. 2015. Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases. Frontier In Microbiol., 685.
Wizna, H. Ahbas, Y. Rizal, A. Dharma, and । P. Kompiang. 2007. Selection and identification of cellulase-producing bacteria isolated from the
litter of mountain and swampy forest. J. Microbiol. Indonesia 1(1): 135-139.

Wizna, H. Abbas, Y. Rizal, A. Dharma, and 1. P. Kompiang. 2009. Improving the quality of tapioca by-products (onggok) as poultry feed through fermentation by Bacillus amyloliquefaciens. J. Appl. Ind. Biotechnol. Irop. Reg. 2(1): 1-5.
Wizna, H. Abbas, Y. Rizal, A. Djulardi, and H. Muis. 2012. The effect of supplementation of micro nutrient on nutrient rice bran which fermented by bacillus amyloliquefaciens. Pakistan J. Nutr. 11(1): 439-443.

Yeo, J. and K.I. Kim. 1997. Effect of feedening diets containing an antibiotic, probiutic, or yucca extract on growth and intestinal urease activity in broiler chick. Poultry Science 76(1): 381-385.

